HONORS CHEMISTRY FINAL EXAM STUDY GUIDE - Fall 2024

- 1. Determine formula mass and number of atoms & molecules (use Avogadro's number)
- 2. Determine average atomic mass using isotopic mass and percent abundances.

For example, the element boron is composed of two isotopes: About 19.9% of all boron atoms are ¹⁰B with a mass of 10.0129 amu, and the remaining 80.1% are ¹¹B with a mass of 11.0093 amu. The average atomic mass for boron is calculated to be: average mass = \sum_{i} (fractional abundance × isotopic mass)_i *Hint: Need to convert percent (% abundance) into decimal notation.* Boron average mass = (0.199 × 10.0129 amu) + (0.801 × 11.0093 amu) = 1.99 amu + 8.82 amu = 10.81 amu

3. Determine (mass) percent composition from chemical formulas. (Hint: think of fractions, $\% = \frac{\text{portion}}{\text{total mass}} \times 100\% = __\%$)

Example: what is theoretical percent composition of CH_4 ?

Get mass of C and mass of all H's from periodic table. Then, get total mass of CH_4

%C = $\frac{12}{16}$ x 100% = 75% C %H = $\frac{4}{16}$ x 100% = 25% H

Mass percent composition: Example below is for glucose, $C_6H_{12}O_6$.

Percent = $\frac{part}{whole} \times 100\%$ Mass % of C = $\frac{6(12.01 g)}{180.16 g} \times 100\%$ = 39.9978 = 40.0% Mass % of H = $\frac{12(1.01 g)}{180.16 g} \times 100\%$ = 6.72735 = 6.73% Mass % of O = $\frac{6(16.0 g)}{180.16 g} \times 100\%$ = 53.286 = 53.3%

4. Five things you need to determine molecular formula:

- 1. Empirical formula
- 2. Mass from Empirical formula
- 3. Molar mass from Molecular formula
- 4. Ratio of Molar mass/Empirical mass
- 5. Molecular formula: Multiply the ratio found in Step 4 to the empirical formula (subscripts)

5. Determine the empirical formula that is 88.8% copper and 11.2% oxygen

6. Determine the molecular formula of caffeine (molar mass 194.19 g/mol), given that a sample contains 49.47 g carbon, 28.85 g nitrogen, 16.48 g oxygen, and 5.20 g hydrogen.

7. A compound with an empirical formula of C_2H_8N and a molar mass of 46.0 g/mol. What is the molecular formula of this compound?

8. Know how to use the density equation, $d = \frac{mass}{volume}$. What is the unit for density?

9. Know how to use dimensional analysis method to convert between units, for example, to convert nm to m or m to nm, etc. This method also applies to converting feet to yard, meter to cm, vice-versa and other forms of units, as well as converting between moles and grams and between moles and number of stuff using Avogadro's number.

Conversion factor 1 nm = 1.00 x 10⁻⁹ m

a) Convert 453 nm to meter (m) 453 nm $(\frac{1 \times 10^{-9} \text{ m}}{1 \text{ nm}}) = 4.53 \times 10^{-7} \text{ m}$ Converting mole to grams $0.688 \mod CO_2 \left(\frac{44.01 \text{ g } CO_2}{\text{mol } CO_2}\right) = 30.3 \text{ g } CO_2$

Converting grams to mole 16.0 g CO₂ $(\frac{1 \mod CO_2}{44.01 \text{ g CO}_2}) = 0.364 \mod CO_2$

b) Convert 6.58 x 10⁻⁷ m to nm.

 $6.58 \times 10^{-7} \text{ m} \left(\frac{1 \text{ nm}}{1.00 \times 10^{-9} \text{ m}}\right) = 658 \text{ nm}$

Practice: Teflon, C_2F_4 (polytetrafluoroethylene polymer) molar mass of C_2F_4 unit = 100.00 g/mol

(a) Calculate the number of C_2F_4 units present in 205 g of Teflon.

$$205 \text{ g } C_2F_4(\frac{1 \text{ mol } C_2F_4}{100.0 \text{ g } C_2F_4})(\frac{6.022 \text{ x } 10^{23} \text{ units } C_2F_4}{1 \text{ mol } C_2F_4}) = 1.23 \text{ x } 10^{24} \text{ units } C_2F_4$$

(b) Determine the number of carbon atoms present in 205 g C_2F_4 .

$$205 \, g \, C_2 F_4 \, (\frac{1 \, \text{mol} \, C_2 F_4}{100.0 \, g \, C_2 F_4}) (\frac{2 \, \text{mol} \, C}{1 \, \text{mol} \, C_2 F_4}) (\frac{6.022 \, x \, 10^{23} \, \text{atoms} \, C}{1 \, \text{mol} \, C} \,) = 2.55 \, x \, 10^{24} \, \text{atoms} \, C$$

(c) How many moles of fluorine are in 205 g of Teflon?

$$205 \text{ g } C_2F_4(\frac{1 \text{ mol } C_2F_4}{100.0 \text{ g } C_2F_4})(\frac{4 \text{ mol } F}{1 \text{ mol } C_2F_4}) = 8.20 \text{ mol } F$$

(d) How many fluorine atoms are in 205 g of Teflon?

$$205 \text{ g } C_2F_4(\frac{1 \text{ mol } C_2F_4}{100.0 \text{ g } C_2F_4})(\frac{4 \text{ mol } F}{1 \text{ mol } C_2F_4})(\frac{6.022 \text{ x } 10^{23} \text{ atoms } C}{1 \text{ mol } C}) = 4.94 \text{ x } 10^{24} \text{ atoms } F$$

10. Solid lithium hydroxide has been used in space vehicles to remove exhaled carbon dioxide from the living environment. The products are solid lithium carbonate and liquid water. A student is trying to determine the mass of gaseous carbon dioxide that is needed to react with 1.00×10^3 g of lithium hydroxide absorb. Which step(s) in the student's work below is (are) **incorrect?**

 $2\text{LiOH}(s) + \text{CO}_2(g) \rightarrow \text{Li}_2\text{CO}_3(s) + \text{H}_2\text{O}(l)$

1.00 x 10³ g LiOH $\left(\frac{1 \text{ mol LiOH}}{23.95 \text{ g LiOH}}\right)\left(\frac{2 \text{ mol LiOH}}{1 \text{ mol CO}_2}\right)\left(\frac{1 \text{ mol CO}_2}{44.01 \text{ g CO}_2}\right)$ Step 1 Step 2 Step 3 Step 4

11. Limiting Reactant

Calculate the mass of magnesium oxide that could be produced if 2.40 g of Mg reacts with 10.0 g of O_2 .

$Mg(s) + O_2(g) \rightarrow MgO(s)$

Determine limiting reactant to get amount of product produced (theoretical yield).

 $2.40 \text{ g Mg} \left(\frac{1 \text{ mol Mg}}{24.31 \text{ g Mg}}\right) \left(\frac{2 \text{ mol MgO}}{2 \text{ mol MgO}}\right) \left(\frac{40.31 \text{ g MgO}}{1 \text{ mol MgO}}\right) = 3.98 \text{ g MgO}$

 $10.0 \text{ g } \boldsymbol{O_2} \left(\begin{array}{c} \frac{1 \text{ mol } O_2}{32.0 \text{ g } O_2} \end{array} \right) \left(\begin{array}{c} \frac{2 \text{ mol } \text{MgO}}{1 \text{ mol } \text{g } O_2} \end{array} \right) \left(\begin{array}{c} \frac{40.31 \text{ g } \text{MgO}}{1 \text{ mol } \text{MgO}} \end{array} \right) = 25.2 \text{ g } \text{MgO}$

Based on the limiting reactant, the possible amount of MgO produced is 3.98 g. (Limiting reactant is the reactant that produces the smaller product yield [moles or grams])

12. Given the following reaction: $2 Fe + 3 Cl_2 \rightarrow 2FeCl_3$. You wish to determine the limiting reactant for the formation of FeCl₃ from 2.30 g of Fe and 4.00 g of Cl₂. a) How many moles of FeCl₃ can be produced from the given mass of Fe?

b) How many moles of $FeCl_3$ can be produced from the given mass of Cl_2 ?

c) Based on (a) and (b) above, which is the limiting reactant, Fe or Cl₂? _____

d) What is percent yield if the actual yield is 5.22 g of FeCl₃? (Hint: calculate theoretical yield from limiting reactant)

% yield = $\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$

13. Be able to name compounds and write chemical formulas of compounds.

- Group 1, 2 and 3 ionic compounds:

NaCl (sodium chloride), CaBr₂ (calcium bromide) KNO₃ (potassium nitrate), MgNO₃)₂ (magnesium nitrate), Al(NO₃)₃ (aluminum nitrate)

- Transition metal ionic compounds (notice the use of Roman Numerals):		
CuCl – copper(I) chloride	CuCl ₂ – copper(II) chloride	
Fe(OH) ₂ – iron(II) hydroxide	Fe(OH)₃ – iron(III) hydroxide	
$Fe_2(CO_3)_3$ – iron(III) carbonate	Ni ₃ (PO ₄) ₂ – nickel(II) phosphate	
- Covalent compounds (nonmetal and nonmetal) – use of Greek prefixes		
CO – carbon monoxide	CO ₂ – carbon dioxide	
N_2O_4 – dinitrogen tetroxide	PCl₅ – phosphorus pentachloride	
P ₄ O ₁₀ – tetraphosphorus decoxide	IF ₇ – iodine heptafluoride	
- Binary Acids		
HF – hydrofluoric acid	HCl – hydrochloric acid	
HBr – hydrobromic acids	H_2S – hydrosulfuric acid	
- Oxyacids		
H_2SO_4 – sulfuric acid	H_2SO_3 – sulfurous acid	
H_2CO_3 – carbonic acid	HClO ₄ – perchloric acid	
HNO₃ – nitric acid	CH₃COOH – acetic acid	
 Ionic Compound hydrates 		
$Pb(ClO_4)_2 \bullet 3H_2O - lead(II)$ perchlorate	e trihydrate	
Ba(OH) ₂ •8H ₂ O – barium hydroxide od	ctahydrate	

Name the following compounds.

NaF	CaCl ₂
K ₂ O	Fe(NO ₃) ₃
I ₂ F ₇	SO ₃
SnBr ₂ •2H ₂ O	Ni(NO ₃) ₂

CuCl₂•2H₂O – copper(II) chloride dihydrate

Write the chemical formulas for the following compounds.

Lithium bromide	magnesium hydroxide	
Calcium sulfide	ammonium carbonate	
Sulfur hexafluoride	cobalt(III) sulfate	
dinitrogen pentoxide	lead(IV) phosphate	
14 . Know isotope symbols. What is an isotope? For example: $\frac{12}{6}$ C, $\frac{13}{6}$ C, and $\frac{14}{6}$ C or ¹² C, ¹³ C, ¹⁴ C		

Determine the mass number, number of protons, neutrons and electrons for the following isotopes.

trons